
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013
495

PAPER Special Section on Mathematical Systems Science and its Applications

Refinement and Verification of Sequence Diagrams Using the
Process Algebra CSP

Tomohiro KAIZU†a), Nonmember, Yoshinao ISOBE††b), and Masato SUZUKI†c), Members

SUMMARY Sequence diagrams are often used in the modular design
of softwares. In this paper, we propose a method to verify correctness of
sequence diagrams. With this method, using the process algebra CSP, con-
current systems can be synthesized from a number of sequence diagrams.
We define new CSP operators for the synthesis of sequence diagrams. We
also report on a tool implementing our synthesis method and demonstrate
how the tool analyzes sequence diagrams.
key words: sequence diagram, process algebra, CSP, process synthesis

1. Introduction

The requirements for the software systems become more
complicated and diversified in recent years. To implement
such complex systems, component-based programming has
spread.

UML diagrams are often used for designing software
components. UML is a standardized modeling language
developed by OMG. Especially in upstream development,
UML sequence diagrams are frequently used to understand
and verify the behavior of components.

However, the UML specification is complicated and
flexible. So it is difficult to verify UML diagrams automat-
ically. It has relied on manual review to find mistakes such
as inconsistencies and insufficient refinements between se-
quence diagrams. If such mistakes are found in a late devel-
opment stage, it may take a lot of time and cost to correct
them.

In this paper, we define a subset of sequence diagrams
with formal semantics and propose a method to verify cor-
rectness of the sequence diagrams. With this method, devel-
opers can clarify the specifications by using formal descrip-
tion and find bugs by using automatic verification.

Compared with the related works described in Sect. 7,
the main advantage of this work is nondeterminism can be
considered. It means that our approach can handle abstract
sequence diagrams. Sequence diagrams are often abstract
in early development stage. Our approach can be applied to
such diagrams.

To verify sequence diagrams, we propose a synthesis

Manuscript received March 27, 2012.
Manuscript revised August 21, 2012.
†The authors are with Japan Advanced Institute of Science and

Technology, Nomi-shi, 923-1211 Japan.
††The author is with National Institute of Advanced Industrial

Science and Technology, Tsukuba-shi, 305-8568 Japan.
a) E-mail: tkaizu@jaist.ac.jp
b) E-mail: y-isobe@aist.go.jp
c) E-mail: suzuki@jaist.ac.jp

DOI: 10.1587/transfun.E96.A.495

method of a formal expression called CSP (Communicating
Sequential Processes) [1], [2] from sequence diagrams in or-
der to find mistakes in the early design stage based on the
process algebra CSP. This synthesis method consists of two
steps: At first, an order of sending and receiving is extracted
from a sequence diagram for each component and it is for-
mally expressed as a CSP process. Next, two or more CSP
processes extracted from a number of sequence diagrams for
the component is combined to a CSP process which repre-
sents the whole behavior of the component. This synthesis
method allows us to verify properties of the concurrent sys-
tem consisting of the components by using CSP-tools, for
example, the model checker FDR [3].

The paper is organized as follows: First, we briefly ex-
plain sequence diagram. In Sect. 3, we introduce CSP and
give new operators ◦ and $ for combining two or more se-
quence diagrams. Then, the synthesis method is presented.
In Sects. 4 and 5, we report on a sequence diagram synthe-
sizer which is an implementation of our synthesis method
and demonstrates the tool by a shopping site example. Fi-
nally, in Sect. 6, we discuss related works.

2. Sequence Diagrams

Sequence diagram is one of the diagrams defined in UML,
which represents the flow of messages between objects
chronologically. UML is a specification language for object
modeling developed and standardized by OMG.

A sequence diagram consists of lifelines, messages, ac-
tivations, and state invariants. Figure 1 is an example of a
sequence diagram.

Each element is explained as follows.

• Lifeline: A lifeline is described in a dotted line, and

Fig. 1 An example of sequence diagrams.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

496
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

shows the existence of the object. At the head of
the lifeline, the object which the lifeline represents is
shown by a rectangle or a stickman shape. The rectan-
gular object shows a component in the system, and the
object of the stickman shape shows an actor outside of
the system.
• Message: Sent and received messages are described

by arrows between lifelines. A return message is de-
scribed in a dotted arrow. In this paper, we assume that
every message is synchronous and it must have a return
message.
• Activation: An activation shows the period during

which the object is performing a procedure. An acti-
vation is described in a thin rectangle on the lifeline.
• State invariant: A state invariant is a runtime constraint

on the participants of the interaction. An state invariant
is described in a text in curly bracket on the lifeline.

In this paper, the set Designs of sequence diagrams is
defined as follows.

Designs = 2S Ds

S Ds = 2Transitions

Transitions =

Components × S tates × Messages × S tates

Messages =

MessageNames × Components × Components

where Components is the set of component names, S tates
is the set of state names, and MessageNames is the set of
message names. A transition (C, S 1,M, S 2) ∈ Transitions
means the component C sends or receives a message de-
scribed as M, and transfers from specific state S 1 to the next
state S 2. A message (MN,CS ,CR) ∈ Messages means the
component CS sends a message whose name is MN, and the
component CR receives it.

States are described as state invariants in sequence di-
agrams. If there is no state invariant between messages, we
define the state as follows:

• The state is an intermediate state if it is on activations.
• Otherwise, the state is the default state.

The order of transitions can be decided by the states. Each
intermediate states has an unique name, so we can connect
an activation from transitions.

For example, Fig. 1 can be formalized as follows.

D1 = {S D1, S D2} ∈ Designs

{S D1, S D2} ⊆ S Ds

S D1 = {T1, T2, T3, T4, T5, T6, T7, T8}
S D2 = {T9, T10, T11, T12}

{T1, T2, . . . , T12} ⊆ Transitions

T1 = (User, d,M1, i1)

T2 = (User, i1,M3, loggedin)

T3 = (User, loggedin,M2, i2)

T4 = (User, i2,M3, loggedin)

T5 = (S ystem, d,M1, i3)

T6 = (S ystem, i3,M3, d)

T7 = (S ystem, d,M2, i4)

T8 = (S ystem, i4,M3, d)

T9 = (User, d,M1, i5)

T10 = (User, i5,M4, d)

T11 = (S ystem, d,M1, i6)

T12 = (S ystem, i6,M4, d)

{M1,M2,M3,M4} ⊆ Messages

M1 = Login = (login,User, S ystem)

M2 = Add = (addToCart,User, S ystem)

M3 = OK = (ok, S ystem,User)

M4 = NG = (ng, S ystem,User)

where d is the default state for each component and i1, i2, i3,
i4, i5, and i6 are the intermediate states. S D1 and S D2 are
the sets of transitions in the left and right sequence diagrams
in Fig. 1, respectively.

With this definition, developers can define mutual re-
cursions using the same state names. For example, the de-
fault state appears many times in Fig. 1. Connecting all oc-
currences of the default states for each component, we can
synthesize a recursive behavior. It helps developers writing
formal behavior using sequence diagrams. Note the scope of
each state name is restricted in its component. For example,
User’s default state and S ystem’s default state are treated as
different states. We use pairs of component name and state
name to define global state names in the sequence diagram.

3. Process Algebra CSP

3.1 Introduction to CSP

Process algebra is a theory to describe and to analyze con-
current processes. CSP is a fundamental process algebra
that has been successfully applied in various areas, for ex-
ample, train control system and security protocol [1], [2],
[4], [5].

Behaviors and structures of concurrent processes can
be formally described in CSP, and then the properties, e.g.
deadlock-freeness, livelock-freeness, and refinement rela-
tions, can be verified by CSP-tools such as the model
checker FDR [3].

CSP processes can be expressed with more than 10 op-
erators, but we introduce the sub-calculus of CSP, which is
essential for describing sequence diagrams, defined by the
following grammar.

P ::= a→ P | P� P | P � P | PX‖Y P | P \ X

| PN

where a is an event name, X and Y are sets of events, and
PN is a process name defined by the form of PN = P.

KAIZU et al.: REFINEMENT AND VERIFICATION OF SEQUENCE DIAGRAMS USING THE PROCESS ALGEBRA CSP
497

Fig. 2 An example of CSP parallel process.

Each operator is explained as follows.

• Prefix: a→ P (a -> P in FDR) can perform the event
a, and thereafter behaves like the process P.
• External choice: P�Q (P [] Q in FDR) is a process

that behaviors like P or Q. The choice of P or Q de-
pends on the next event. This choice can be controlled
from the outside, i.e. the other processes or the envi-
ronments.
• Internal choice: P � Q (P |˜| Q in FDR) is a pro-

cess that behaviors like P or Q. This choice is in-
ternally (nondeterministically) decided, and cannot be
controlled from the outside.
• Parallel composition: PX‖Y Q (P [X || Y] Q in FDR)

means P (resp., Q) can independently perform events
in (X − Y) (resp., (Y − X)), and P and Q have to syn-
chronize through events in (X ∩ Y).
• Hiding: P \ X (P \ X in FDR) behaves like P except

that events in X are hidden.

Figure 2 is an example of CSP parallel process. P1
is an process which repeats the sequential execution of in,
sync, and sync. P2 is an process which repeats the sequen-
tial execution of sync, out, and sync. In the parallel process
S YS , P1 and P2 synchronize with sync only. Therefore, at
first P1 performs in independently, then P1 and P2 synchro-
nize with sync, then P2 performs out independently, then
P1 and P2 synchronize with sync again, and then this be-
havior is repeated. Hence, S YS behaves like the following
sequential process S YS ′.

S YS ′ = in→ sync→ out → sync→ S YS ′

3.2 CSP Equivalence and Refinements

There are some well-known models to define equivalence
and refinement relations of CSP processes. In this section,
we briefly explain the traces model and the failures model.

In the traces model, the equivalence and the refinement
relations are defined with the set traces(P) which is the set
of traces, i.e. event sequences, that the process P can exe-
cute. For example, the set of traces for the operators→, �,
and � are defined as follows:

traces(a→ P) = {〈〉} ∪ {〈a〉ˆs|s ∈ traces(P)}
traces(P � Q) = traces(P) ∪ traces(Q)

traces(P�Q) = traces(P) ∪ traces(Q)

The trace-equivalence and the trace-refinement are de-
fined as follows:

P =T Q⇔ traces(P) = traces(Q)

P �T Q⇔ traces(P) ⊇ traces(Q)

where P �T Q means Q refines P.
In the failures model, equivalence and refinement re-

lations are defined with traces(P) and f ailures(P) which is
the set of pairs (s, X), where s is a trace of P and X is the
set of events P refuses after the execution of s. For example,
the set of failures for the operators � and � are defined as
follows:

f ailures(P � Q) = f ailures(P) ∪ f ailures(Q)

f ailures(P�Q) =

{(〈〉, X)|(〈〉, X) ∈ f ailures(P) ∩ f ailures(Q)}
∪{(s, X)|s � 〈〉,
(s, X) ∈ f ailures(P) ∪ f ailures(Q)}

where it is important to note the difference of the two fail-
ures. This means that the failures model can distinguish de-
terminism and nondeterminism.

The failure-equivalence and the failure-refinement are
defined as follows:

P =F Q ⇔ traces(P) = traces(Q)

∧ f ailures(P) = f ailures(Q)

P �F Q ⇔ traces(P) ⊇ traces(Q)

∧ f ailures(P) ⊇ f ailures(Q)

where P �F Q means Q refines P.
The failures model cannot treat livelock correctly.

However, according to our definition of sequence diagram,
each transition must have at least one message. States are
changed only after sending or receiving a message, so live-
lock is not generated in sequence diagrams.

4. Extended CSP for Sequence Diagrams

4.1 Semantics of Sequence Diagrams

The semantics of sequence diagrams can be given with CSP,
where each message in sequence diagrams is translated to
a CSP event and a sequence is translated to a CSP process.
For example, the System component in sequence diagrams
given in Fig. 1 can be translated to CSP as follows:

Pseq
D1

(T5) =M(Login)→ Pst
D1

(S ystem, i3)

Pseq
D1

(T6) =M(OK)→ Pst
D1

(S ystem, d)

Pseq
D1

(T7) =M(Add) → Pst
D1

(S ystem, i4)

Pseq
D1

(T8) =M(OK)→ Pst
D1

(S ystem, d)

Pseq
D1

(T11) =M(Login)→ Pst
D1

(S ystem, i6)

Pseq
D1

(T12) =M(NG)→ Pst
D1

(S ystem, d)

M(Login) = call .login.User.S ystem

M(Add) = call .addToCart.User.S ystem

M(OK) = call .ok.S ystem.User

M(NG) = call .ng.S ystem.User

498
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

where Pst
D(C, S) is a CSP process corresponding to compo-

nent C in state S . Pseq
D (T) is a CSP process corresponding to

a sequence T , andM is a mapping from message structures
to CSP events.

The process Pseq
D is formally defined as follows.

Pseq
D (T) = M(M)→ Pst

D(C, S 2)

where

M(M) = call .MN.CS .CR

T = (C, S 1,M, S 2)

M = (MN,CS ,CR)

Note that there are several sequences starting from
S 2. Pst

D(C, S 2) is a result of merging every sequence start-
ing from S 2. The detailed definition will be presented in
Sect. 4.2. We will define it to realize our intuition.

There are three major expectations for merging se-
quences. First, the component can perform all original se-
quences. One of the sequences starting from S 2 is selected
and processed. Second, same transition can appear in dif-
ferent sequence diagrams. If several sequences start from
the same state and have the same message, these are repre-
senting exactly same behavior. We do not distinguish which
sequence is selected. Finally, in an abstract level, the sender
should nondeterministically select one message just before
it sends the message. For example, in Fig. 1, there are 2
login messages. These 2 messages are representing exactly
the same message. The diagram represents that sometimes
S ystem replies ok and sometimes replies ng. The decision
is nondeterministically made by S ystem after login message
is received.

4.2 Sequence Diagram Synthesis Operators

According to the expectation given in Sect. 4.1, we define
two new sequence diagram synthesis operators: Sequence
Diagram Merging Operator ◦ and Sending Event Internal-
ization Operator $. With these operators, the synthesized
process from P, Q, R... is described as (P◦Q◦R...)$Σ!. Here
Σ! is a set of events which these components P, Q, R..ṡend.
The operator ◦ is used for combining the same events in
different sequence diagrams, and the operator $ is used for
internalizing choices of sending events because they should
be decided in sender processes without depending on envi-
ronments.

The grammar of our CSP including the sequence dia-
gram synthesis operators ◦ and $ is defined.

Definition 1: Our CSP syntax is defined by

C ::= CX‖YC | C \ X | P
P ::= a→ P | P� P | P � P | P ◦ P | P$X | PN

where a is an event name, X and Y are sets of events, and
PN is a process name defined by PN = P.

We separate the parallel and hiding operators from the

other operators. It means connections between components
are not dynamically changed. It is a future work to extend
our method to dynamically changing system structures.

Before giving the formal semantics of the new opera-
tors, we briefly explain the expected properties for the syn-
thesis operators.

(1) The synthesized process can perform all original se-
quences. In other words, following processes are trace
equivalent. Note they are not necessarily failure equiv-
alent.

(P�Q�R . . .) =T (P ◦ Q ◦ R . . .)$Σ!

(2) The same event often appears in different sequence di-
agrams. In this case, the combined process should have
the same next state after the event occurs. For example,
if a → b → P and a → c → Q are the sequences of
a component, the component should be able to handle
both b and c after a.

((a→ b→ P) ◦ (a→ c→ Q))$Σ!

=F (a→ (b→ P) ◦ (c→ Q))$Σ!

Two choice operators � and � have been given in CSP,
but these operators cannot represent such type of syn-
thesis. For general, the following equation is expected
to hold.

((a→ P) ◦ (a→ Q))$Σ! =F a→ (P ◦ Q)$Σ!

(3) Different events make choices of behaviors. Here it is
important to note the difference between sending and
receiving. One of the sending events should be se-
lected by the process sending it, while one of the re-
ceiving events should be selected by the other process,
thus senders or environments. Therefore, the following
equations are expected to hold.

((a→ P) ◦ (b→ Q))$Σ!

=F (a→ P$Σ!) � (b→ Q$Σ!)

where a ∈ Σ!, b ∈ Σ!

((a→ P) ◦ (b→ Q))$Σ!

=F (a→ P$Σ!)� (b→ Q$Σ!)

where a � Σ!, b � Σ!

We define the semantics of P ◦ Q and P$Σ! with traces
and failures to satisfy these expected properties. To satisfy
the expectation (2), operator ◦ is defined as combining the
same events to one event. To satisfy the expectation (3),
operator $ is defined as internalizing sending events.

The synthesis process P ◦ Q is similar to the external
choice P�Q except that the same events are combined to
an event. To do that, if P and Q can execute the same trace
s and they do not refuse the same event a after s, then P ◦Q
does not refuse it either. This meaning of P◦Q is defined as
follows.

KAIZU et al.: REFINEMENT AND VERIFICATION OF SEQUENCE DIAGRAMS USING THE PROCESS ALGEBRA CSP
499

Definition 2:

traces(P ◦ Q) = traces(P) ∪ traces(Q)

f ailures(P ◦ Q) = {(s, X)|
(s, X) ∈ f ailures(P) ∪ f ailures(Q),

g(s, P)⇒ (s, X) ∈ f ailures(P),

g(s,Q)⇒ (s, X) ∈ f ailures(Q)}

where g(s, P) requires that the trace s is not refused by the
process P, and it is defined as follows.

g(〈〉, P) = true

g(sˆ〈a〉, P) = g(s, P) ∧ ((s, {a}) � f ailures(P))

The associative law and the commutative law for ◦ hold.

(P1 ◦ P2) ◦ P3 =F P1 ◦ (P2 ◦ P3),

P1 ◦ P2 =F P2 ◦ P1

By these laws, we can use the replicated form without
respect to the order of synthesis of n processes. We use the
following syntax sugars to describe composition of n pro-
cesses by ◦, � , and �.

©i∈{0...n}@Pi = P0 ◦ P1 ◦ · · · ◦ Pn

� i∈{0...n}@Pi = P0 � P1 � . . . � Pn

� i∈{0...n}@Pi = P0 � P1 � . . . � Pn

Then, the following Theorem 1 holds.

Theorem 1:

(1) ©i∈I@(a→ Pi) =F a→ (©i∈I@Pi)

(2) (i � j⇒ ai � aj)⇒
©i∈I@(ai → Pi) =F � i∈I@(ai → Ri)

where I is a non-empty finite index set. These equations can
be proved by the following lemmas:

(1) g(s, P)⇔ g(〈a〉ˆs, a→ P)

(2) a � b⇒ g(〈a〉ˆs, b→ P) = f alse

Theorem 1(1) can be applied if all events are the same.
Theorem 1(2) can be applied if all events are different. In
other cases, we can remove ◦ from CSP formula using fol-
lowing corollary.

Corollary 1:

©i∈I@(ai → Pi) =F � a∈A@(a→ P′a)

where

A = {a | ∃i. i ∈ I, ai = a}
P′a = ©{i∈I | ai=a}@Pi

Note P′a contains ◦ in its definition. Therefore, this
corollary is not enough to define ◦. It can be defined by
the fixed point of the equation in the corollary, but it is more
tractable to use traces and failures like in Definition 2.

Selections of sending events in the synthesized process
have to be internalized. It can be realized by the operator $
defined as follows.

Definition 3:

traces(P$Z) = traces(P)

f ailures(P$Z) = f ailures(P) ∪ {(s, X)|
∃Y.((s, Y) ∈ f ailures(P) ∧ X ⊆ Y ∪ Z),

∃a.(sˆ〈a〉 ∈ traces(P) ∧ a � X))}

The condition (X ⊆ Y ∪Z) means events in Z can be refused
in P$Z, and the last condition (a � X) requires that only one
event is not refused at least. Then, the following Theorem 2
holds†.

Theorem 2:

(1) (A! = φ)⇒
(� a∈A@(a→ Pa))$Σ! =F � a∈A? @(a→ Pa$Σ!)

(2) (A! � φ ∧ A? = φ)⇒
(� a∈A@(a→ Pa))$Σ! =F �a∈A! @(a→ Pa$Σ!)

(3) (A! � φ ∧ A? � φ)⇒ (� a∈A@(a→ Pa))$Σ!

=F �a∈A! @(a→ Pa$Σ!) � � b∈A? @(b→ Pb$Σ!)

where A is a set of events, and A! = A ∩ Σ!, A? = A − Σ!,
where “−” means the difference of sets††.

In Theorem 2(3), the operator � represents timeout and
it is a syntax sugar defined as follows.

P � Q = (P�Q) � Q

It intuitively means that P � Q now behaves like P and it
behaves like Q after a while.

Before defining the operator $ and proving Theorem
2(3), we did not have a clear prediction about the behavior
of the mix case of sending and receiving. Theorem 2(3)
gives a clear solution to the case.

In addition, some properties of the operators ◦ and $
have been proved. For example, the two operators preserve
the failures-refinement as follows.

P1 �F Q1, P2 �F Q2⇒ P1 ◦ P2 �F Q1 ◦ Q2,

P �F Q⇒ P$Z �F Q$Z

Especially, the operator ◦ is very carefully defined for pre-
serving the refinement. For example, the condition s ∈
traces(P) is similar to and easier than g(s, P) used in the
definition of ◦, and can be used instead for defining a sim-
ilar operator to ◦. However, the similar operator does not
preserve the refinement. Using g(s, P) is an important idea
in this work.

Using these definitions, corollary and preservation of

†Theorem 2 also hold for any set Z instead of Σ!, but here we
give an instance for clarification.
††See http://dr.asukaze.net/sd2csp/ for the proof.

500
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

the failures-refinement, the original expectations hold as fol-
lows.

(1) (P�Q�R . . .) =T (P ◦ Q ◦ R . . .)$Σ!

Proof: traces(P�Q) = traces(P ◦ Q) and traces(P$Z) =
traces(P) by definitions.

(2) ((a→ P) ◦ (a→ Q))$Σ! =F a→ (P ◦ Q)$Σ!

Proof: (a→ P) ◦ (a→ Q) =F a→ (P ◦ Q) by Teorem 1(1).

(3.1) ((a→ P) ◦ (b→ Q))$Σ!

=F (a→ P$Σ!) � (b→ Q$Σ!)

where a ∈ Σ!, b ∈ Σ!.
Proof:

((a→ P) ◦ (b→ Q))$Σ!

=F ((a→ P)� (b→ Q))$Σ!

=F (a→ P$Σ!) � (b→ Q$Σ!)

First transform is derived by Theorem 1(2) and second trans-
form is derived by Theorem 2(2).

(3.2) ((a→ P) ◦ (b→ Q))$Σ!

=F (a→ P$Σ!)� (b→ Q$Σ!)

where a � Σ!, b � Σ!.
Proof:

((a→ P) ◦ (b→ Q))$Σ!

=F ((a→ P)� (b→ Q))$Σ!

=F (a→ P$Σ!)� (b→ Q$Σ!)

First transform is derived by Theorem 1(2) and second trans-
form is derived by Theorem 2(1).

In these proofs, we can apply theorems to sub-formulas
because our operators preserves the failures-refinement.

Using ◦ operator, we can compute Pst
D(C, S) as follows.

Pst
D(C, S) = (©T∈TD(C,S)@Pseq(T))

where

TD(C, S) = { T ∈ tr(D) |
C = comp(T), S = prev(T)}

and tr(D) is the set of all transitions in diagram D, comp(T)
is the component for transition T , and prev(T) is the previ-
ous state for transition T .

tr(D) = {T |∃S D. T ∈ S D, S D ∈ D}
comp(T) ∈ {C|∃S 1.∃M.∃S 2.

T = (C, S 1,M, S 2)}
prev(T) ∈ {S 1|∃C.∃M.∃S 2.

T = (C, S 1,M, S 2)}

From the definitions, following property holds.

� T∈TD(C,S)@Pseq
D (T) �F Pst

D(C, S)

For example, the System component in Fig. 1 behaves
as follows.

Pst
D1

(S ystem, d) = M(Login)→Pst
D1

(S ystem, i3)

◦ M(Add)→ Pst
D1

(S ystem, i4)

◦ M(Login)→ Pst
D1

(User, i6)

Pst
D1

(S ystem, i3) = M(OK)→ Pst
D1

(S ystem, d)

Pst
D1

(S ystem, i4) = M(OK)→ Pst
D1

(S ystem, d)

Pst
D1

(S ystem, i6) = M(NG)→ Pst
D1

(S ystem, d)

If the initial state for each component Init is given, we
can define a CSP process representing whole design.

Pdesign
D (Init)

= ‖C∈CD @[ΣD(C)]Pst
D(C, Init(C))$Σ!D(C)

where

CD = {C | ∃T ∈ tr(D).C = comp(T)}
ΣD(C) = {M(M) | ∃T ∈ tr(D).M = mes(T),

C = comp(T)}
Σ!D(C) = {M(M) | ∃T ∈ tr(D).M = mes(T),

C = sender(M)}

and mes(T) is the message for transition T and sender(M)
is the sender for message M.

mes(T) ∈ {M|∃C.∃S 1.∃S 2.

T = (C, S 1,M, S 2)}
sender(M) ∈ {CS |∃MN.∃CR.

M = (MN,CS ,CR)}

‖i@[Xi] Pi is a parallel composition of all processes Pi

with events Xi.

‖i≤n@[Xi] Pi = ((P0X0‖X1 P1)X0∪X1‖X2 P2)

. . . (X0∪···∪Xn−1)‖Xn Pn

For example, the user and the system in Fig. 1 behave
as follows.

Pst
D1

(User, d)${M(Login),M(Add)}

ΣD1
‖ΣD1
Pst

D1
(S ystem, d)${M(OK),M(NG)}

where ΣD1 = {M(Login),M(Add),M(OK),M(NG)}. It rep-
resents that the user starts from the default state and its send-
ing message is Login and Add, and the system starts from
the default state and its sending message is OK and NG.

When the sequence diagram is refined with compo-
nent dividing, the sending and receiving between compo-
nents that have been defined before refinement are pre-
served. Therefore, the correctness of the refinement can be
verified with equality of CSP processes.

Pdesign
D (Init) \ H(D,D′)

=F Pdesign
D′ (Init′) \ H(D,D′)

KAIZU et al.: REFINEMENT AND VERIFICATION OF SEQUENCE DIAGRAMS USING THE PROCESS ALGEBRA CSP
501

where D′ is a design refined from D, H(D,D′) is a difference
between D and D′.

H(D,D′) = (ΣD ∪ ΣD′) − (ΣD ∩ ΣD′)

where “−” means the difference of the sets, and ΣD =

∪C∈CD (ΣD(C)).
In sequence diagrams, developers may or may not write

concrete data on messages. Without concrete data, mes-
sages are nondeterministically selected by sender processes
and deterministically received by receiver processes. While
other formal methods like I/O automata can express con-
crete data passing, CSP failures model can verify models
without concrete data.

4.3 Transformation to Standard CSP Process

We present a method for transforming any process
Pst

D(C, S)$Σ! to a failure-equivalent process S ynthD(C,S) in
standard CSP.

S ynthD(C,S) =F (©S ∈S@Pst
D(C, S))$Σ!D(C)

where Σ!D(C) is the set defined in Sect. 4.2 and it means that
the tools for standard CSP can be applied to S ynthD(C,S)
in order to verify the extended CSP processes with ◦ and $
for sequence diagrams

Synth is defined as follows:

(1) (A!D(C,S) = φ)⇒
S ynthD(C,S) =

� a∈A?D(C,S)@a→ S ynthD(C,ND(C,S, a))

(2) (A!D(C,S) � φ ∧ A?D(C,S) = φ)⇒
S ynthD(C,S) =

� a∈A!D(C,S)@a→ S ynthD(C,ND(C,S, a))

(3) (A!D(C,S) � φ ∧ A?D(C,S) � φ)⇒
S ynthD(C,S) =

� a∈A!D(C,S)@a→ S ynthD(C,ND(C,S, a))

� � a∈A?D(C,S)@a→ S ynthD(C,ND(C,S, a))

where

ND(C,S, a) = {next(T) | T ∈ tr(D),

C = comp(T), prev(T) ∈ S, a =M(mes(T))}
A!D(C,S) = {M(M) | ∃T ∈ tr(D).

M = mes(T),C = sender(M), prev(T) ∈ S}
A?D(C,S) = {M(M) | ∃T ∈ tr(D).

M = mes(T),C = receiver(M), prev(T) ∈ S}

and receiver(M) is the receiver for message M.

receiver(M) ∈ {CR | ∃MN.∃CS .

M = (MN,CS ,CR)}

For example, the System component in Fig. 1
Pst

D1
(S ystem, d)${M(M3),M(M4)} is transformed to the fol-

lowing process S ynthD1 (S ystem, {d}).

S ynthD1 (S ystem, {d})
=M(Login) → S ynthD1 (S ystem, {i3, i6})
�M(Add)→ S ynthD1 (User, {i4})

S ynthD1 (S ystem, {i3, i6})
=M(OK)→ S ynthD1 (S ystem, {d})
� M(NG)→ S ynthD1 (S ystem, {d})

S ynthD1 (S ystem, i4)

=M(OK)→ S ynthD1 (S ystem, {d})

S is a subset of the component’s state. So, in the
worst case, the computational complexity to generate stan-
dard CSP process from a sequence diagram design is O(2N)
for state count N. However, for practical cases, most of them
are not reachable from the initial state. We can start calcula-
tion from the initial state and proceed with necessary states.
For example, the system in Fig. 1 has 4 states (2N = 16),
but only 3 subsets of these are reachable from the default
state. The translation finishes in a couple of seconds in our
experiments using a laptop computer with 1.8 GHz CPU.

5. SD2CSP: A Conversion Tool

To find mistakes of sequence diagrams using CSP-tools such
as the model checker FDR, a tool which converts sequence
diagrams into CSP processes is required. We developed a
tool named SD2CSP that converts the sequence diagrams
into extended CSP processes with the synthesis operators ◦
and $, and then transforms them to Standard CSP processes
as explained in Sect. 4.3.

SD2CSP reads the standard XMI file where informa-
tion in sequence diagrams is described, and it outputs the
FDR description which contains the CSP processes of the
sequence diagrams. The XMI format is a XML format pro-
vided as OMG standard to exchange the UML model. To
read the XMI file by SD2CSP, the model elements must be
lined up in the time series. The model checker FDR is a
standard CSP-tool. Therefore, SD2CSP with help of FDR
can verify refinements between sequence diagrams.

Figure 3 is a screen shot of SD2CSP. SD2CSP runs
on Eclipse platform. Using UML editor plugins, se-
quence diagrams can be designed and converted to CSP
processes seamlessly. Figure 4 is an example output for

Fig. 3 A screen shot of SD2CSP.

502
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

COMPO_(System.default_) = (

login -> COMPO_(System.i5_i4_)

[] addToCart -> COMPO_(System.i6_)

)

COMPO_(System.i5_i4_) = (

ng -> COMPO_(System.default_)

|˜| ok -> COMPO_(System.default_)

)

COMPO_(System.i6_) = (

ok -> COMPO_(System.default_)

)

Fig. 4 A generated FDR description.

S ynthD1 (S ytem, {d}).

6. An Example of Verification

We demonstrate how SD2CSP with help of FDR can ver-
ify concurrent systems by a shopping site example. This
shopping site provides following functions: displaying all
sold items, adding items to the cart, purchasing, displaying
recipe of recommended dish. Login and logout is necessary
to use these functions.

In the abstract design level, we assume that all func-
tions are achieved by a single component named System. In
this example, state invariants are used for representing the
login state and the logout state of the user, and the empty
state and the non-empty state of the cart in the system. This
abstract design level is modeled in 14 sequence diagrams
(Fig. 5).

In the concrete design level, we classifies the func-
tions of this shopping site under three features: users man-
agement, commodities selling, and recipe offering. There-
fore, the component System is divided into the three com-
ponents UserManager, MarketSite, and RecipeSite for the
three functions (Fig. 6),

Now, by our tool SD2CSP with help of FDR, we can
check whether the concrete sequence diagrams correctly re-
fines the abstract sequence diagrams. As the result of this
verification, we found an error. This error is analyzed and
corrected as follows:

1. Analysis: According to the FDR debugger, the error
occurs after the user logged out and logged in again.
After the re-login, as a reply of the message “show-
Cart”, system returns “empty” at the abstract level but
“cartInfo” at the concrete level.

2. Conjecture: The component MarketSite sends the mes-
sages “empty” in the state “default ” and sends the
message “cartInfo” in the state “haveCart”. Therefore,
we can guess that the error is caused by forgetting up-
dates of state of MarketSite.

3. Check: By checking the two right sequence diagrams
in Figs. 5 and 6, we can find out the cause as follows.
In the abstract level, if the message “logout” is sent,

Fig. 5 A part of sequence diagrams in the abstract level.

Fig. 6 A part of sequence diagrams in the concrete level.

Fig. 7 The fixed sequence diagram.

the system clears the cart. However, in the concrete
level, MarketSite manages the cart, but nothing is sent
to MarketSite.

4. Correction: Considering the information above, this er-
ror can be corrected by clearing the cart in the concrete
level at each logout (i.e. the right one of Fig. 6). We add
the message “clearCart” from System to MarketSite as
shown in Fig. 7.

Then, we have confirmed that the corrected concrete se-
quence diagrams refines the abstract sequence diagrams by
SD2CSP and FDR.

As shown in this example, using SD2CSP and FDR,
we can check the refinement between two specifications at
different abstract levels in the early stage. If an error is found
in the refinement, we can correct the detected part. This tool
helps improving the software quality without rework cost.

7. Related Works

There are some other studies for synthesis of state-based

KAIZU et al.: REFINEMENT AND VERIFICATION OF SEQUENCE DIAGRAMS USING THE PROCESS ALGEBRA CSP
503

model from scenario-based model.
A.W. Biermann has proposed a method for automatic

program generation from execution step of sample calcula-
tion [6]. This method constructs state transition model from
executed instructions and conditions satisfied in each step.
Steps could be combined to one state if they have the same
instruction. To generate deterministic program, states are
divided if they have two or more transitions with the same
condition and different destinations. The generation tool
outputs a deterministic program with the minimum number
of states.

E. Mäkinen has proposed a tool named “MAS” [7], in
which a similar idea to [6] is applied to sequence diagrams.
In this method, sending events are assigned to states and re-
ceiving events are used as transition conditions. MAS gen-
erates deterministic state transition model by a similar algo-
rithm to [6]. When the generated model is different from the
expectations, the model can be modified by entering coun-
terexamples.

Biermann’s method [6] and Makinen’s method [7] gen-
erates compact deterministic state-based models that can ex-
ecute input scenarios. However, these methods are not nec-
essarily available in the early design stage because nonde-
terminism exists there. Our tool SD2CSP is available to se-
quence diagrams even if details in the components have not
been decided because our method uses the failures model in
CSP, where nondeterminism can be considered.

The approach using Live Sequence Chart has been pro-
posed by D. Harel et al. [8]. Live Sequence Chart is an ex-
tension of sequence diagrams, it can describe a conditional
scenario that must occur when the condition is satisfied. By
explicitly giving such conditions in Live Sequence Chart,
the meaning of the scenarios are clarified, the state transi-
tion model satisfying the conditions can be derived.

However, in the actual software development, to ex-
actly define all the conditions of scenarios is not easy be-
cause the conditions can depend on internal states in objects
which have not been fixed in the early design stage. Our
method is available for normal sequence diagrams without
such explicit conditions.

R. Alur et al. have proposed a method using a chart
named “HMSC” [9]. HMSC shows the execution order be-
tween message sequence charts. Based on this approach,
Message Sequence Chart plugin (LTSA-MSC), which is a
plugin for LTSA model checker, has been developed [10].
LTSA-MSC verifies message sequence charts and a HMSC
on LTSA model checker.

When using LTSA-MSC, nondeterminism can be de-
scribed in HMSC, but behaviors described in each sequence
chart must be deterministic. Therefore, if sequence charts
contain nondeterminism, they must be carefully divided
at the nondeterministic points to create the HMSC model.
Each component selects a message it sends, but the selec-
tion procedure may not be fixed in an abstract level at the
early stage. In our approach, such selection can be nonde-
terministically expressed by the internal choice � in CSP.

8. Conclusion

In this paper, we have extended the process algebra CSP
with two new operators ◦ and $ for formally describing be-
haviors of components in sequence diagrams and for veri-
fying them. Furthermore, we have proved CSP laws for ◦
and $ as shown in Theorems 1 and 2, and we have presented
a method for transforming processes which contain ◦ and
$ into standard processes, according to the CSP laws. The
method allows us to use standard CSP-tools such as FDR.

We have developed a tool SD2CSP which is an imple-
mentation of our method, thus it generates CSP processes
with ◦ and $ from sequence diagrams and then transforms
them to standard CSP processes in FDR syntax. SD2CSP
can detect errors by verifying whether the concrete sequence
diagrams behaves like the abstract sequence diagrams. We
have demonstrated a sequence of usage of SD2CSP by an
example of a shopping site.

It is a future work to extend SD2CSP with data-
passing. Currently, data-passing between components has
not been supported in SD2CSP yet, but various data-types
such as integer, list, set, and user-defined type are supported
in FDR. Therefore we believe it is feasible to verify data-
passing. Also, we are discussing the refinements of data-
types.

And in the future, we plan to improve the usability of
our tool SD2CSP, by extending preprocesses of sequence
diagrams. We plan following preprocesses:

• Automatic insertion of state invariants from additional
scenarios
• Automatic complement of abnormal sequence dia-

grams

Acknowledgments

We wish to express our gratitude to Professor Shinichi
Honiden of NII and Professor Koichiro Ochimizu of JAIST
for giving us the opportunity of our cooperative work. This
work was partially supported by KAKENHI 20500023.

References

[1] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall,
1985.

[2] A.W. Roscoe, The Theory and Practice of Concurrency, Prentice
Hall, 1998.

[3] Formal Systems (Europe) Limited, “FDR2 User Manual,”
http://www.fsel.com/fdr2 manual.html.

[4] B. Buth and M. Schronen, “Model-checking the architectural design
of a fail-safe communication system for railway interlocking sys-
tems,” J.M. Wing, J. Woodcock, and J. Davies, ed., FM99, LNCS
1709, pp.1869–1869, Springer, 1999.

[5] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe,
The modelling and analysis of security protocols: the csp approach,
Addison-Wesley, 2001.

[6] A.W. Biermann and R. Krishnaswamy, “Constructing programs
from example computations,” IEEE Trans. Softw. Eng., vol.SE-2,

504
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

no.3, pp.141–153, 1976.
[7] E. Mäkinen and T. Systä, “Mas — An interactive synthesizer to sup-

port behavioral modelling in uml,” Proc. 23rd International Confer-
ence on Software Engineering, 2001.

[8] D. Harel and H. Kugler, “Synthesizing state-based object systems
from lsc specifications,” Int. J. Foundations of Computer Science,
2002.

[9] R. Alur and M. Yannakakis, “Model checking of message sequence
charts,” Proc. 10th International Conference on Concurrency The-
ory, 1999.

[10] S. Uchitel, R. Chatley, J. Kramer, and J. Magee, “Ltsa-msc: Tool
support for behaviour model elaboration using implied scenarios,”
Proc. 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2003.

[11] H. Liang, J. Dingel, and Z. Diskin, “A comparative survey of
scenario-based to state-based model synthesis approaches,” Proc.
2006 International Workshop on Scenarios and State Machines:
Models, Algorithms, and Tools, 2006.

Tomohiro Kaizu received his B.Eng.
and M.Eng. degree in Department of Computer
Science of Tokyo Institute of Technology in
2004 and 2006 respectively. In 2006–2010,
he worked for NEC Corporation. In 2010,
he joined Google Inc. He is currently under
the Doctoral program in Information Science at
Japan Advanced Institute of Science and Tech-
nology. His research interests include formal
verification of software designs.

Yoshinao Isobe received his B.Eng. and
M.Eng. degrees in Electrical Engineering from
Shibaura Institute of Technology in 1990 and
1992 respectively. In 1992, he joined Elec-
trotechnical Laboratory, MITI. He received his
D.Eng. degree from Shizuoka University in
2001. He was a visiting researcher of the Uni-
versity of Wales, Swansea for one year in 2003.
He is currently a senior researcher in the Na-
tional Institute of Advanced Industrial Science
and Technology and a special appointment as-

sociate professor in the National Institute of Informatics. His research in-
terests include formal verification of concurrent systems. He is a member
of JSSST and IPSJ.

Masato Suzuki received his B.Eng. degree
in Department of Computer Science of Tokyo
Institute of Technology (TITECH) in 1987, and
his M.Eng. and D.Eng. degrees from Graduate
School of TITECH in 1989 and 1992 respec-
tively. He was a research associate of the Japan
Advanced Institute of Science and Technology
(JAIST), moved TITECH as an associate pro-
fessor in 1998. In 2002–2004, he was also an
associate professor of National Institute of In-
formatics. He is currently an associate professor

of School of Information Science, JAIST. His research interests include ar-
chitecture and component based software engineerings. He is a member of
JSSST and IPSJ.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

