
Electronic Communications of the EASST
Volume X (2013)

Proceedings of the
Automated Verification of Critical Systems

(AVoCS 2013)

Verifying sequence diagrams using the process algebra CSP

Tomohiro KAIZU , Yoshinao ISOBE , Masato SUZUKI ,

3 pages

Guest Editors: Steve Schneider, Helen Treharne
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Verifying sequence diagrams using the process algebra CSP

Tomohiro KAIZU 1, Yoshinao ISOBE2, Masato SUZUKI 3,

1 tkaizu@jaist.ac.jp, Japan Advanced Institute of Science and Technology
2 y-isobe@aist.go.jp, National Institute of Advanced Industrial Science and Technology

3 suzuki@jaist.ac.jp, Japan Advanced Institute of Science and Technology

Abstract: We develop a verification tool for sequence diagrams named SD2CSP.
It converts sequence diagrams to processes in CSP, so that existing model checking
tool can verify them. We implemented the tool and conducted experiments with real
world case studies.

Keywords: Sequence Diagram, Process Algebra, CSP, Process Synthesis, Verifi-
cation

Introduction UML diagrams are often used for designing software components. UML is a
standardized modeling language developed by OMG. Especially in upstream development, UML
sequence diagrams are frequently used to understand and verify the behavior of components.

However, the UML specification is complicated and flexible. Therefore, it is difficult to verify
UML diagrams automatically. Users have relied on manual review to find mistakes such as
inconsistencies and insufficient refinements between sequence diagrams. If such mistakes are
found in a late development stage, it may take a lot of time and cost to correct them.

In [KIS13], we defined a subset of sequence diagrams with formal semantics and proposed
a method to verify correctness of the sequence diagrams. In our method, sequence diagrams
are converted to processes expressed in the process algebra CSP (Communicating Sequential
Processes), and then the processes can be verified by model checking tools for CSP such as
PAT and FDR2. The most important idea is to use internal choices and external choices for
message sending and receiving, respectively. Using internal and external choices, our tool can
generate a nondeterministic model, which is useful to verify early stage designs. In [KIS13], We
implemented the conversion algorithm in a prototype tool named SD2CSP for demonstrating the
effectiveness of the approach.

We develop a new version of SD2CSP for verifying sequence diagrams based on the approach
presented in [KIS13]. The new SD2CSP supports following features for verifying real world
systems.

• In sequence diagrams, objects can be dynamically created or destructed. The object ids
can be passed by message parameters.

• Visualizing event traces on original sequence diagrams.

The tool is implemented with Dart language and compiled to JavaScript. Any browser which
supports HTML5 and CSS3 can execute SD2CSP. Also, the editor and sample sequence diagrams
can be found from the following page:

• http://dr.asukaze.net/sd2csp/online/

1 / 3 Volume X (2013)

mailto:tkaizu@jaist.ac.jp
mailto:y-isobe@aist.go.jp
mailto:suzuki@jaist.ac.jp
http://dr.asukaze.net/sd2csp/online/


Verifying sequence diagrams using the process algebra CSP

(a) (b)

Figure 1: sequence diagrams of Google Play store

Case Study We conducted a case study of SD2CSP using a real system in Google. The target
model consists of 12 sequence diagrams: 4 sequence diagrams in abstract design and 8 sequence
diagrams in concrete design. It represents servers in customer support system in Google Play
store. We successfully verified it by SD2CSP and PAT tool version 3.2.1 that the concrete model
is behaviorally equal to the abstract model by hiding internal communications.

Figure 1ais one of the abstract sequence diagrams. OnlyUserand servers directly talking with
Userare defined in the abstract model. This diagram represents how this system works from the
user’s point of view.Figure 1bis one of the concrete sequence diagrams. More backend servers
and messages are defined in the concrete model.

With deadlock checking, SD2CSP can verify this system will not accidentally stop. In SD2CSP,
channels are assumed to be synchronous, therefore message pool is not generated automatically
between processes. For example, if every process waits for sending messages, it is detected as a
deadlock. When a deadlock is detected, the developer should write more sequence diagrams to
specify what happens after the deadlock situation, or fix incorrect behavior so as not to reach the
deadlock situation.

For refinement checking, we verified following assertion.

(AbstractModel\ X) =F (ConcreteModel\ X)

whereX is the set of events which the two models do not share. Note this is not an usual refine-
ment checking in CSP. In the sequence diagram refinement process, new objects and messages
are added to the model. It is not equivalent to the CSP refinement process. Instead, by hiding
the newly added messages, it is expected that the abstract model and the concrete model are
behaviorally equal because the user facing behavior is common in the two models.

Table 1shows the result of the verification. In abstract level, 4 sequence diagrams with 5
objects are written. SD2CSP and PAT verified the model is deadlock-free in 0.026 seconds. In
concrete level, 8 sequence diagrams with 10 objects are written. SD2CSP and PAT verified the
model is deadlock-free in 0.337 seconds. With these 2 models, SD2CSP and PAT verified the

Proc. AVoCS 2013 2 / 3



ECEASST

Table 1: result of the case study

abstract model concrete model refinement erroneous model
deadlock-free deadlock-free checking deadlock-free

used time 0.026s 0.337s 0.575s 0.006s

abstract model and the concrete model are behaviorally equal from users’ point of view using
CSP refinements and hiding. It takes 0.575 seconds.

Furthermore, to check the ability for finding errors, we changed the model to intentionally
introduce an error, and then applied SD2CSP to the erroneous model. SD2CSP successfully
detected the bug in 0.006 seconds and the counter examples analysis tool supported us to find
the causality. In this case study, we used a workstation with 2.8 GHz Intel Core i7 CPU, 8.0 GB
RAM. We confirmed the verifications are useful for developing software systems.

Related Work There are some other studies for verification of sequence diagrams [KW07]
[DD10]. UML 2.0 supports alt, loop, break and opt operators. When developers write sequence
diagrams with these operators, CSP or Promela models can be converted from the sequence dia-
grams using their methods. The main effort of our approach is to provide a method to synthesize
state based models from scenario based models even if developer do not use these operators.

Conclusion We developed the SD2CSP tool for verifying sequence diagrams. The tool can
verify sequence diagrams where objects can be dynamically created or destructed and the object
ids can be passed by message parameters. It converts sequence diagrams to processes in CSP,
for checking the their consistency by the model checker PAT. We conducted experiments with a
real system in Google using the tool. Our results indicate that verification of sequence diagrams
is useful for developing complicated systems.

For future work, we plan to improve the usability of our tool SD2CSP, by extending it with
preprocesses of sequence diagrams. For example, we plan an automatic complement of abnor-
mal sequence diagrams. Currently developers need to cover all possible scenarios in sequence
diagrams, however, the tool can complement simple scenarios like ”Return error and finish”.

Bibliography

[DD10] L. Dan, L. Danning. An Approach to Formalize UML Sequence Diagrams in CSP.3rd
International Conference on Computer and Electrical Engineering, 2010.

[KIS13] T. Kaizu, Y. Isobe, M. Suzuki. Refinement and Verification of Sequence Diagrams
Using the Process Algebra CSP.IEICE Transactions on Fundamentals of Electronics,
Communications and Computer SciencesVol. E96-A(no. 2):495–504, 2013.

[KW07] A. Knapp, J. Wuttke. Model checking of UML 2.0 interactions. Pp. 42–51, 2007.

3 / 3 Volume X (2013)


